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Abstract

An effective bead–spring model combining the advantages of large time steps of traditional bead–rod models and com-
putational rigor of traditional bead–spring models is proposed to simulate the dynamic behaviors of flexible polymer
chains with arbitrary longitudinal stiffness. The proposed model can be used to simulate many types of polymer chains
or networks with different chain elasticity via a unified integration scheme with reasonably large time steps.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For a long flexible polymer chain subject to a tensile stress [1,2], thermal fluctuations and undulations of the
chain will be gradually frozen out as the stress increases so that, eventually, the deformation behavior of the
chain will be dominated by its longitudinal elasticity instead of configurational entropy [3]. There are currently
no unified polymer simulation models to treat the continuous transition from entropy dominated to bond-
stretching dominated regimes. Depending on the longitudinal stiffness of a polymer chain, at least three types
of coarse grained simulation models have been developed in the literature: the linear bead–spring model for
chains with small longitudinal stiffness [4–7], the bead–nonlinear-spring model [8–11] and the bead–rod model
[10–15] for chains with large longitudinal stiffness. In these methods, a continuous polymer chain is discretized
as a series of virtual beads connected by springs or by rigid rods.

Among various discrete models for polymer chains, the linear bead–spring model is apparently suitable for
the dynamic simulations of chains with longitudinal elasticity since neither the bead–nonlinear-spring model
nor the bead–rod model can properly describe the backbone extension when the chains are significantly
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stretched. However, in order to ensure numerical convergence, the time step in the simulations of the bead–
spring chain must be taken less than the shortest intrinsic vibration period of the springs. This requirement
makes the bead–spring type models less efficient in the case of short vibration periods under large longitudinal
stiffness. In this case, the choice of simulation methods often has to go to a bead–rod type model which can
take larger time steps because the high-frequency vibration modes are neglected by replacing the connecting
springs with inextensible rods. The cost for such replacement is that the backbone extension of the chain is
neglected while additional constraint conditions on the rod length must be enforced in each integration time
step. Nonlinear spring models have also been introduced in order to describe the properties of a polymer chain
which becomes increasingly stiff under stretch, examples including the inverse Langevin spring model [16] and
the wormlike spring model [1]. A drawback of nonlinear spring models is that the spring forces can become
singular when approaching full extension [9].

In this paper, we propose an effective bead–spring model which combines the merits of large time steps of
bead–rod type models and computational rigor of the bead–spring type models. The model incorporates effec-
tive constraint forces in a second-order approximation and appears to be accurate in both entropy-dominated
and bond-dominated regimes. Because of this wide range of applicability and efficiency, the proposed model
can be used to simulate complex polymer systems via an efficient unified integration scheme with large inte-
gration time steps.

2. Model

For a polymer with low or intermediate longitudinal stiffness, the bead–spring type models are quite effi-
cient since the following simple integration scheme can be adopted [17],
Xðnþ1Þ ¼ XðnÞ þ Dt
kBT

DðnÞFðnÞ þ RðnÞ ð1Þ
where X(n+1) and X(n) are the new and current position vectors of a set of virtual beads, D(n) is the translational
diffusion matrix, and F(n) is the vector of forces acting on the beads. The statistical random force (in the dimen-
sion of length), R(n), which is generated at each time step according to a Gaussian distribution with zero mean
and variation, satisfies
hRðnÞRðn0Þi ¼ 2DðnÞDtdnn0 ð2Þ

where dnn0 is the Kronecker delta.

To ensure numerical convergence, the time step Dt in the bead–spring model must be smaller than the short-
est intrinsic vibration period of the springs even though the overall dynamic behaviors of the chains in
entropy-dominated cases may not be significantly affected by the longitudinal elasticity [14]. This requirement
makes the bead–spring type models less efficient in the case of large longitudinal stiffness. In this case, the
choice of simulation methods often goes to a bead–rod type model which can take larger time steps because
the high-frequency vibration modes are neglected by replacing the connecting springs with inextensible rods.
The computational cost for this replacement is that an additional N � 1 constraint conditions (N = number of
beads in the polymer chain) on the rod length must be satisfied in each integration time step. An efficient inte-
gration scheme for the bead–rod model is the so-called linear constraint solver [18,14], in which the bead posi-
tions are updated according to
Xðnþ1Þ ¼ ðI� TðnÞBðnÞÞ XðnÞ þ Dt
kBT

DðnÞFðnÞ þ RðnÞ
� �

þ TðnÞd ð3Þ
where d is the vector of (N � 1) inextensible rod length, B(n) is an (N � 1) � 3N matrix containing the gradients
of the constraints, and
TðnÞ ¼ DðnÞBðnÞ
T

ðBðnÞDðnÞBðnÞ
T

Þ�1 ð4Þ

Since the computation of T(n) involves matrix inversion, the computational effort for each time step in the bead–
rod model is usually much larger than that in the bead–spring approach. In the case of chain networks, the issue of
computational cost can be even more serious due to the lack of effective treatments or approximations for
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simplifying the matrix inversion [18,14]. Although various nonlinear spring models [8–11] have also been devel-
oped for polymers with inextensible backbones by limiting vibrations along the chain length, these models usually
suffer the drawback of singular spring forces as the chain approaches full extension [9].

In this paper, we propose an effective bead–spring model to combine the merits of large time steps of the
bead–rod type models and computational rigor of the bead–spring type models. There are usually two stages
in simulating polymers: on the first stage, a real polymer molecule is simplified to an idealized model, such as a
bead–spring chain; on the second stage, a proper integration algorithm is selected to simulate the behaviors of
the ideal model. Here we focus on the second stage, i.e. developing an accurate and efficient integration algo-
rithm. In our approach, the integration scheme for the bead–spring model is used but the spring constant is
replaced with an effective constant in the first-order approximation and, for higher accuracy, additional effec-
tive constraint forces are introduced in the second-order approximation which appears to be accurate in both
entropy-dominated and bond-dominated regimes.

We first demonstrate the basic idea with a simple example involving a pair of beads connected via a spring
with stiffness constant k subject to an external force f, as shown in Fig. 1(a). With the typical assumption in
Brownian dynamics that inertia effects are negligible, the governing equation for the motion of one bead (here,
without losing generality, only the right half of the system is studied due to the symmetry) is
Fig. 1.
diagra
�n _x� 2kxþ f ¼ 0 ð5Þ

where the center of the spring is fixed, n is the friction coefficient and the origin of x corresponds to the equi-
librium position of the bead. The solution to Eq. (5) shows that the bead position at time t = Dt is
xðDtÞ ¼ xð0Þe�2k
n Dt þ f

2k
1� e�

2k
n Dt

� �
ð6Þ
We can compare the above analytical solution to the integration scheme of the bead–spring type models in Eq.
(1). For D(n) = kBT/n and
F ðnÞ ¼ �2kxðnÞ þ f ð7Þ

Eq. (1) becomes
xðnþ1Þ ¼ xðnÞ 1� 2kDt
n

� �
þ f

Dt
n

ð8Þ
a

b

An illustrative diagram of two beads subjected to forces. (a) A stand-alone pair of beads connected by a spring. (b) Free body
m of a pair of beads from a bead–spring chain.
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If the time step n and n + 1 correspond to t = 0 and t = Dt, respectively, matching the prediction of the
bead position from the analytical solution in Eq. (6) and that from the integration scheme in Eq. (8)
requires
1� 2Dtk
n
¼ e�

2Dtk
n ð9aÞ

Dt
n
¼ 1� e�

2k
n Dt

2k
ð9bÞ
Eqs. (9a) and (9b) are approximately satisfied if Dtk/n� 1, which is just the requirement for time steps in the
bead–spring type models: smaller time step Dt should be taken at larger stiffness k.

To overcome this restriction of small time step for the spring with high stiffness, as mentioned above,
bead–rod type models may be used but the extensions of rods are always zero no matter how large the external
force f is, which leads to certain sacrifice of computational rigor due to the approximation of replacing a stiff
spring with an inextensible rod.

To keep the simplicity of the time integration scheme for bead–spring models, we propose an effective
bead–spring model which can take large time steps even for chains with large longitudinal stiffnesses and
can simulate the chain behaviors in both entropy-dominated and bond-stretching dominated regimes. Intro-
ducing two effective parameters in this effective bead–spring model, the effective spring constant ~k and the
effective constraint force ~f (taking positive value when the force is inward), we modify Eq. (7) as
F ðnÞ ¼ �2~kxðnÞ � ~f þ f : ð10Þ

Substituting Eq. (10) into Eq. (1) yields the following revised integration scheme:
xðnþ1Þ ¼ xðnÞ 1� 2~kDt
n

 !
þ ðf � ~f ÞDt

n
: ð11Þ
To accurately predict the bead position from Eq. (11), the effective spring constant ~k and constraint force ~f
can be determined by comparing Eqs. (11) and (6) as
~k ¼ 1

2
1� e�

2Dtk
n

� � n
Dt

ð12aÞ

~f ¼ 1� n
2Dtk

1� e�
2Dtk

n

� �� �
f ð12bÞ
Obviously, the revised integration scheme in Eq. (11) can be used to simulate this simple system accurately for
any time step Dt.

The proposed effective bead–spring approach can actually be applied to polymer chains with arbitrary lon-
gitudinal stiffness. One can see this clearly in the following extreme cases. In the limit when 2Dtk/n� 1, Eqs.
(12a) and (12b) become
~k ¼ 1

2
1� e�

2Dtk
n

� � n
Dt
� 1

2
1� 1� 2Dtk

n

� �� �
n
Dt
¼ k ð13aÞ

~f ¼ 1� n
2Dtk

1� e�
2Dtk

n

� �� �
f � 1� n

2Dtk
2Dtk

n

� �� �
f ¼ 0 ð13bÞ
indicating that the effective model would degenerate into the traditional bead–spring model when the spring
constant k or the time step Dt is sufficiently small. In the other limit when k ?1, Eqs. (13a) and (13b) are
reduced to
~k ¼ 1

2

n
Dt

ð14aÞ
~f ¼ f ð14bÞ
Substituting Eq. (14) into Eq. (11) yields
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xðnþ1Þ ¼ xðnÞ 1�
2 n

2Dt

� 	
Dt

n

" #
¼ 0 ð15Þ
corresponding to the rigid-rod constraint. Eq. (15) shows that we can use the bead–spring integration scheme
in Eq. (11) to simulate the chain with infinite longitudinal stiffness as long as an effective spring constant and
constraint force are taken as ~k ¼ n

2Dt and ~f ¼ f , respectively.
It should be pointed out that the introduction of these effective parameters is just a numerical scheme to

make the simulation independent of the choice of the time step (at least for large time step) and, as such, does
not change real physical problem at all. The essence of this effective bead–spring model is to make use of an
analytical solution to achieve large time steps in numerical simulations.

This effective treatment can be easily verified for the one spring system under constant forces, and we will
demonstrate in the following that it can be extended to more general cases. Consider the free body diagram of
a pair of beads connected by a spring from a bead–spring chain, as illustrated in Fig. 1(b). There are a total of
six forces acting on this subsystem, which include the statistical random forces frandom

i ; frandom
i�1 , the external

forces fexternal
i , fexternal

i�1 and neighboring spring forces f
ði�2Þ
i�1 ; f

ðiþ1Þ
i . The variation of the spring-length, character-

ized by the local coordinate x in Fig. 1(b), should only depend on the x-axis projection of the force difference
between bead # i and bead # i � 1, i.e., ½ðfexternal

i þ frandom
i þ f

ðiþ1Þ
i Þ � ðfexternal

i�1 þ frandom
i�1 þ f

ði�2Þ
i�1 Þ� � ex, where ex is

the unit vector along the x-axis. In comparison with the previous simple example, this is equivalent to taking
the stretching force f as
f ¼ 1

2
½ðfexternal

i þ frandom
i þ f

ðiþ1Þ
i Þ � ðfexternal

i�1 þ frandom
i�1 þ f

ði�2Þ
i�1 Þ� � ex: ð16Þ
Different from the previous simple example, f in this complex system relies on many factors and can be viewed
as a statistical variable with the mean value hfi.

According to Eq. (12), ~k depends on the spring constant k only, while the effective constraint forces ~f also
depends on f, and therefore it should be updated frequently to obtain the exact evolution of the system. How-
ever, considering that there exist random forces frandom

i and frandom
i�1 in Eq. (16), this process is not deterministic

but statistical. In order to save the computation effort while capturing the average behaviors of the chain, ~f
can be related to hfi instead of f as
~f ¼ 1� n
2Dtk

1� e�
2Dtk

n

� �� �
hf i ð17Þ
Moreover, it is found that, for a specific x(n) or x(0), the mean value hx(n+1)i from Eq. (11) and hx(Dt)i from
Eq. (6) are identical, i.e. the average spring extension can be accurately predicted with this simple effective
bead–spring model.

It should be emphasized that, for bead–spring system with identical springs, the parameter ~k in Eq. (12a),
which depends on the spring constant k, is a constant for identical springs, while the effective constraint forces
~f in Eq. (17) may take different values for different springs even with the same stiffness k since hfi is not a con-
stant. In general cases, different springs need different ~k and ~f . The integration scheme for the whole system in
Eq. (1) then becomes
Xðnþ1Þ ¼ XðnÞ þ Dt
kBT

DðnÞeFðnÞ þ RðnÞ ð18Þ
where eFðnÞ is the collective vector of effective forces acting on the beads, i.e. the sum of real external forces,
effective spring forces and effective constraint forces. It can be similarly reasoned from the derivation above
that the proposed integration scheme is also applicable for polymer networks without additional computa-
tional complexity and cost.

When the time step Dt is chosen, the effective spring constants ~k can be computed from Eq. (12a). However,
the effective constraint forces ~f in Eq. (17) cannot be determined since we do not know hfi before the simu-
lation. We then start the simulation with an initial guess of ~f guessed ¼ 0, and call it the first-order effective bead–
spring model, i.e. a scheme with only effective spring constants ~k. After a round of simulation, hfi can be com-
puted from the information collected. Specifically, averaging Eq. (11) yields
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hxðnþ1Þi ¼ hxðnÞi 1� 2~kDt
n

 !
þ ðhf i � ~f guessedÞDt

n
ð19Þ
Considering hx(n+1)i = hx(n)i = hxi, hfi can be solved from the equation above as
hf i ¼ 2~khxi þ ~f guessed ð20Þ

Once the estimation of hfi is obtained, the ~f guessed can be updated according to Eq. (17). It will be shown later
that, just one-time updating of ~f guessed is able to yield quite accurate results in most situations. For systems
evolving statistically with time, regular updating of ~f guessed may be required. We call the above integration
scheme with both effective spring constants ~k and non-zero effective constraint forces ~f the second-order effec-
tive bead–spring model.

In the effective bead–spring model, the time step Dt is no longer constrained by the convergence conditions
due to high or infinite spring stiffness, but we still need a criterion for Dt to ensure the accuracy of the simu-
lation. The dimensionless ratio
hRi
d
¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

n
Dt

s
ð21Þ
is used to select a proper Dt, where d is the spring length, and hRi is the average amplitude of the scalar ran-
dom force (in the dimension of length) which is supposed to be much smaller than d. When hRi/d = 5% and

2%,Dt can be determined from Eq. (21) as 0:00125 nd2

kBT and 0:0002 nd2

kBT , respectively. These two time steps will be

used in the example simulations discussed below.

3. Case study

To verify the effective bead–spring model, we have implemented the model in several example problems
with theoretical predictions and experimental results.

3.1. Polymers with strong longitudinal stiffness subject to stretching forces at ends

Since no polymer has infinite longitudinal stiffness, it is more reasonable to model their behaviors with
bead–spring systems. In this example, a 9-beads bead–spring chain with spring constant k = 10000kBT/d2

under extension is studied. The stretching forces f stretching at ends are ranged from 1kBT/d to 2000kBT/d.
To obtain accurate simulation results for verification, we first conduct traditional bead–spring model simula-
tions with very small time step Dt ¼ 5� 10�6 nd2

kBT , which makes 2Dtk/n = 0.1� 1 and Eq. (9) approximately
satisfied. Fig. 2 shows the normalized mean end-to-end distance as the function of the stretching force, and
the accurate results from traditional bead–spring model scheme are denoted with open circles. Two theoretical
predictions based on freely jointed chain (FJC) model [19,20] and simple static stretching of bonds in the poly-
mer backbone are also presented in the figure. When the longitudinal stiffness of polymers is strong and the
stretching force weak, corresponding to the entropy-dominated situation, the FJC model, which is essentially
a bead–rod model with the rod length d taken as the Kuhn length, can describe the chain behaviors quite well.
When the FJC is subject to a pair of stretching forces f stretching at the ends, the theoretical force-extension rela-
tion can be written as follows [20]
jhx1 � xNij=L ¼ coth
df stretching

kBT
� kBT

df stretching
ð22Þ
where x1 and xN are the position vectors of the end beads and L is the chain length. If the stretching force
f stretching becomes stronger and stronger, the bead–spring system will enter the bond-dominated regime,
and the extension of the chain can be computed from simple static stretching. Obviously, this bond extension
regime cannot be captured by bead–rod models in which the chain or rods are inextensible. Fig. 2 shows that
the proposed second-order effective bead–spring model, denoted with solid squares, can accurately capture the



Fig. 2. The normalized end-to-end distance of a bead–spring chain with the spring constant k = 10000kBT/d2 as a function of the
stretching force.
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behaviors of this stiff bead–spring system in transition from entropy-dominated to bond-dominated regimes,
also with much larger time step Dt ¼ 2� 10�4 nd2

kBT , 40 times as that used in traditional bead–spring model in
this case.

Therefore, the proposed effective bead–spring models are more efficient than the traditional bead–spring
models and bead–rod models in that large time steps can be used and yet no matrix computation is required.
Moreover, the second-order effective bead–spring model can surpass bead–rod models by simulating more
general cases.

In addition, it is interesting to note that the first-order effective bead–spring model yields sufficiently accu-
rate prediction for the stretched chain with the mean normalized end-to-end distance up to 90%, as denoted
with solid diamonds in Fig. 2. We note that the first-order effective bead–spring model is essentially equivalent
to the traditional bead–spring model except that the spring constant k is replaced with the effective spring con-
stant ~k. Therefore, it should be easy to implement this scheme in the existing codes on bead–spring models and
no code revision is needed. The error associated with the first-order effective bead–spring model can be
approximately evaluated before the simulation. According to Eq. (11), the relative error d on spring length
due to the ignorance of ~f can be estimated as
d ¼ 2Dt
nd

~f ð23Þ
Substituting Eq. (17) into the equation above gives
d ¼ 2Dt
nd

1� n
2Dtk

1� e�
2Dtk

n

� �� �
hf i ð24Þ
The amplitude of hfi can often be estimated a priori. For instance, the mean value hfi in the present example
should be comparable to the stretching force f stretching, namely hfi � f stretching. Together with the parameters

Dt ¼ 2� 10�4 nd2

kBT and k = 10000kBT/d2 used in the example, the estimate of the relative error is

d � 0.0003f stretching/(kBT/d). Therefore, if f stretching = 10kBT/d (under this pair of forces the bead–spring chain
would be almost straight as shown in Fig. 2), the relative error of the spring length is only 0.3%.



B. Liu et al. / Journal of Computational Physics 227 (2008) 2794–2807 2801
We have also investigated the rigid-rod constraint in the FJC model by considering a bead–rod system
consisting of nine beads subject to f stretching = kBT/d, which corresponds to the limiting case of k ?1.

According to Eq. (14a), the effective spring constant ~k ¼ n
2Dt is used in the first-order effective bead–spring

model. When Dt ¼ 0:00125 nd2

kBT , corresponding to hRi/d = 5%, the average spring/rod length equals 1.006d

with a standard deviation of 0.075d. When Dt ¼ 0:0002 nd2

kBT , corresponding to hRi/d = 2%, the average

spring/rod length equals 1.0009d, with a standard deviation of 0.03d. After introducing the effective con-

straint force ~f ¼ hf i into the second-order effective bead–spring model based on Eq. (17), the average
spring/rod length becomes 1.0002d and 1.00002d for the two different time steps above, but the standard
deviation remains the same. Therefore, the constraint conditions for the rod length can be approximately
satisfied and smaller time step or smaller hRi/d would lead to stronger constraint. The effective bead–
spring model seems to compromise between accuracy in rod length constraint and efficiency in the behav-
iors of polymers with moderate computational effort.

In addition, we have studied the dependence of the error on the number of beads. A 101-beads bead–rod
chain under stretching forces is simulated by the effective bead–spring model, and no error accumulation effect
with the chain length is found.

3.2. Polymers with small longitudinal stiffness

Another advantage of the effective bead–spring model is that relatively larger time steps can be taken
in simulations to ensure accuracy or convergence for polymers with small longitudinal stiffness, corre-
sponding to the traditional bead–spring model. To demonstrate this point, we consider a bead–spring
chain with nine beads under a stretching force f = kBT/d. The physical spring constant is chosen to
be k = 900kBT/d2. The normalized mean end-to-end distance, jhx1 � xnij/L as defined in the previous
example, should be independent of the simulation time step Dt. We investigate the sensitivity of the sim-
ulation results to time step in the traditional bead–spring model and in the proposed effective bead–

spring model. Four time steps, Dt nd2

kBT

� �.
¼ 1� 10�4; 1� 10�3; 1� 10�2 and 1 � 10�1, are considered. It

has been verified that the smallest time step can ensure the accuracy of simulations. In the traditional
bead–spring model, the simulations diverge for two larger time steps. The relative extensions

jhx1 � xnij/L are 0.316 and 0.286 for Dt= nd2

kBT

� �
¼ 1� 10�4 and 1 � 10�3, respectively. In contrast, the

simulations in the first-order effective bead–spring model converge for four time steps, and the relative

extension are 0.316, 0.316, 0.33 and 0.52 for Dt nd2

kBT

� �.
¼ 1� 10�4; 1� 10�3; 1� 10�2 and 1 � 10�1,

respectively. The simulation results from the effective bead–spring model, as shown in Fig. 3, is less sen-

sitive to time step and remains reasonably accurate even for Dt= nd2

kBT

� �
¼ 1� 10�2 at which the traditional

bead–spring model already diverges.
While the results in Fig. 2 indicated that longitudinal elasticity dominates the deformation of polymer

chains under very large stretching forces, those in Fig. 3 showed that, even for small tensile forces on the order
of a few kBT/d, longitudinal elasticity can play a significant role in the deformation of a polymer chain when
its longitudinal stiffness is smaller than, say, 1000 kBT/d2.

3.3. Polymers with long-range hydrodynamic interactions

The hydrodynamic interactions are often important in Brownian dynamics simulations of polymer
chains [4–6,14,17]. To demonstrate the effective bead–spring model for hydrodynamic interactions, we con-
sider the translational diffusion coefficient of a DNA chain. The translational diffusion matrix D in Eq. (1)
is given by Rotne–Prager hydrodynamic interaction tensor [21]. The DNA chain is modeled as a bead–rod
system with the first-order effective bead–spring integration scheme. The computational parameters are
taken as follows:
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Persistence length p = 53 nm;
Rod length d = 106 nm;
Temperature T = 293 K;
Radius of beads a = 0.07d;
Viscosity of water g = 0.001 kg s�1 m�1;
Time step Dt ¼ 0:0002 nd2

kBT , where n = 6pga.

The translational diffusion coefficient Dt can be estimated via a long trajectory simulation from the mean-
square fluctuations of the system according to the Einstein–Stokes relation
D
t(1

0-1
2 m

2 /s
)

a

Fig. 4
L = 30
6tDtðtÞ ¼ hkxc:m:ðtÞ � xc:m:ð0Þk2i ð25Þ
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where xc.m.(t) is the center of mass of the chain at time t. Figs. 4(a) and (b) show that the converged transla-
tional diffusion coefficient Dt for DNA chain with different lengths can be obtained within a finite time span.
The relation between Dt and the chain length from the simulation of the effective bead–spring model is shown
in Fig. 5. For comparison, theoretical predictions and experimental results [22–24] are also drawn in Fig. 5,
and good agreement among simulations, theory and experiments is observed.
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3.4. Dynamic relaxation of an initially straight chain

To demonstrate the proposed effective bead–spring model for real dynamic simulations, we study the con-
formational relaxation of a polymer chain from an initial straight configuration. To describe the relaxation
dynamics, Brownian dynamics simulations are performed based on the proposed effective bead–spring model
as well as the traditional bead–spring model. For a 9-bead chain with spring constant k = 10000kBT/d2, it can
be seen from Fig. 6 that the computed trajectories based on the effective bead–spring model under time steps
up to Dt = 10�3nd2/(kBT) show good agreement with those obtained from the traditional bead–spring model
with a much smaller time step of Dt = 10�5nd2/(kBT). In contrast, even for a time step as small as 8 � 10�5nd2/
(kBT), the trajectory based on the traditional bead–spring model differs significantly from the result at the time
step of 10�5nd2/(kBT). Further simulations indicate that the results based on the traditional bead–spring
model diverge as soon as the time step exceeds 10�4nd2/(kBT).

4. Comparisons with other integration algorithms

Besides the implicit integration scheme with rigid constraints shown in Eqs. (3) and (4), there are also a
number of other implicit algorithms as discussed in Fixman’s paper [25]. We have used the simple example
in Fig. 1(a) to test and compare among all schemes. The governing equation for this single degree of freedom
system in the absence of an external force is
_x ¼ � 2k
n

x ð26Þ
with solution
xðtÞ ¼ xð0Þe�2k
n t ð27Þ
On the other hand, by integrating Eq. (26), the discrete numerical solution can be obtained as
xðnþ1Þ ¼ xðnÞ þ
Z tnþ1

tn

_xdt ¼ xðnÞ � 2k
n

Z tnþ1

tn

xdt ð28Þ
by which various integration schemes can be tested and compared.
For the trapezoidal rule (or the midpoint rule)

R tnþ1

tn
xdt ffi Dtðxðnþ1Þ þ xðnÞÞ=2 in Fixman’s paper [25], the

resulting integration scheme is
xðnþ1Þ ¼
1� kDt

n

1þ kDt
n

xðnÞ ð29Þ
For the backward Euler rule
R tnþ1

tn
xdt ffi Dtxðnþ1Þ in Fixman’s paper [25], the integration scheme is
xðnþ1Þ ¼ 1

1þ 2kDt
n

xðnÞ ð30Þ
The traditional bead–spring scheme used in the previous section is essentially the Euler algorithm withR tnþ1

tn
xdt ffi DtxðnÞ and
xðnþ1Þ ¼ 1� 2kDt
n

� �
xðnÞ ð31Þ
There is also a second-order scheme obtained by iteration of the Euler approximation in the trapezoidal rule
[25,26,4]. In this case, an auxiliary position ~xðnþ1Þ is first computed according to the Euler algorithm in Eq. (31)
as
~xðnþ1Þ ¼ 1� 2kDt
n

� �
xðnÞ ð32Þ
Then the trapezoidal rule is used to estimate the integral
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Z tnþ1

tn

xdt ffi Dtð~xðnþ1Þ þ xðnÞÞ=2 ð33Þ
Solving Eqs. (28), (32) and (33) yields the second-order integration scheme
xðnþ1Þ ¼ 1� 2kDt
n

1� kDt
n

� �� �
xðnÞ ð34Þ
a

b

The normalized displacement as a function of the normalized time for the single degree of freedom system in Fig. 1(a). Two time
re used in various integration schemes: (a) Dt = 2.5n/k; (b) Dt = 0.8n/k.
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It can be seen that all the schemes listed above have errors in computing
R tnþ1

tn
xdt in Eq. (28), especially when

the time step Dt is relatively large. However, the effective bead–spring model essentially uses the analytical

solution Eq. (27) to compute this integral, i.e.
R tnþ1

tn
xdt ¼ n

2k xðnÞ 1� e�
2kDt

n

� �
, leading to
xðnþ1Þ ¼ e�
2kDt

n xðnÞ ¼ 1� 2~kDt
n

 !
xðnÞ ð35Þ
which is the same as Eq. (11). In this simple example, the effective bead–spring scheme is consistent with the
analytical solution of Eq. (27) for any time step.

Figs. 7(a) and (b) show the displacement as a function of time for this system. It is seen that, while the effec-
tive bead–spring algorithm follows the analytical solution exactly, all other schemes deviate from the analyt-
ical solution more or less, especially when the time step is large. The stability condition of an integration
scheme can be obtained by investigating the ratio jx(n+1)/x(n)j. Only jx(n+1)/x(n)j < 1 leads to stable simulations.
It can be shown that the Euler scheme and the second-order scheme are stable only when Dt < n/k, and are not
shown in Fig. 7(a). In contrast, the effective bead–spring scheme, the trapezoidal scheme and the backward
Euler scheme are unconditionally stable.

5. Summary and discussions

By generalizing an analytical solution in the case of a single pair of beads connected by spring, we have
developed an efficient effective bead–spring model for simulations of polymer chains with arbitrary longitudi-
nal stiffness. The model adopts a simple integration scheme as in traditional bead–spring models while taking
large time steps as in bead–rod models. By simply replacing the spring constant in traditional bead–spring
model with an effective spring constant, the first-order algorithm can be implemented with sufficient accuracy
in the simulation of entropy-dominated polymer behaviors. To expand the applicability of the concept, by
introducing additional effective constraint forces, we have further formulated a second-order effective bead–
spring model which appears to be accurate in both entropy-dominated and bond-dominated regimes. Because
of the efficiency and flexibility, the proposed effective bead–spring model may help simulate the dynamic
behaviors of many types of polymer chains with different chain elasticity via an efficient unified integration
scheme with large time steps. Combining with angular springs, this model can also be used to simulate the
bending behaviors of semiflexible polymers.
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